
1

Models, Metamodels, and Model Transformation for
Cyber-Physical Systems

Nathan Jarus∗, Sahra Sedigh Sarvestani†, and Ali R. Hurson∗
∗Department of Computer Science

†Department of Electrical and Computer Engineering
Missouri University of Science and Technology

Rolla, MO 65409, USA
Email: {nmjxv3,sedighs,hurson}@mst.edu

Abstract—One approach to increasing the sustainability of
critical systems is to fortify them with cyber infrastructure
that monitors the system, enables early diagnosis of faults,
and provides decision support that facilitates greater efficacy.
Modeling and analysis of the resulting cyber-physical systems is
a significant challenge, as the physical and cyber infrastructures
can be very different in time scales, complexity, and architec-
ture. Model composition is a potential solution. Metamodeling
seeks to facilitate model composition by providing methods for
composing models of different types, including performance and
dependability models, as well as methods for transforming one
type of model to another. This paper describes the application of
metamodeling to cyber-physical systems. Our proposed approach
to model transformation is based on abstract interpretation, a
program analysis technique. Models exist for disparate attributes
of cyber-physical systems, but these models are typically domain-
specific. We seek to map models from one physical domain to
another, or to extract a model of one system attribute from
a model of another attribute. This ability would considerably
increase the utility of the existing body of knowledge on modeling
of cyber-physicals systems.

I. INTRODUCTION

For infrastructure to be sustainable, it must be both efficient
and dependable. Supplementing physical infrastructure with
cyber control and communication is a means of achieving
both objectives. Identifying suitable cyber elements and de-
termining where they should be placed in the system requires
understanding of the effects of their addition on functional and
nonfunctional attributes of the system. Models that provide a
unified representation of the physical and cyber operation are
critical to this understanding, and to justifiable reliance on the
resulting cyber-physical system (CPS).

The scale, complexity, and heterogeneity typical of critical
infrastructure complicates modeling of these (CPSs). No single
model can capture all aspects of a complex system. If any
changes are made to a system as part of the design process,
the modeling process must start over in order to identify all
assumptions that have changed. The field of metamodeling
has been introduced to increase the efficacy of modeling by
facilitating automatic or semi-automatic model generation and
composition [23].

Many existing metamodeling tools take a top-down ap-
proach, where the system-level model is composed from

component-level submodels, which may be of different types.
This model composition offers detailed and accurate repre-
sentation, but is complex and requires a) the construction of
a large number of models and b) the ability to unify these
models in a semantically correct fashion.

Model transformation, in contrast, aims to transforming one
system model into a different type of model of the same
system, providing a means for model checking to ensure
each model holds the same assumptions about the system.
The most common model transformation approach is to view
models as labeled graphs and to define graph rewriting rules
that transform one model’s graph into another. A significant
constraint on this approach is that it only applies to models
that can be viewed as graphs. An alternative is the use of
object-oriented class inheritance to transform models, whose
application is constrained to models that can be expressed in
terms of an object hierarchy. Creating a technique that can
facilitate diverse transformations between diverse model types
is an open challenge.

While model transformation may reduce model fidelity by
simplifying the task of modeling, the transformation frame-
work itself is prone to error. Care must be taken to ensure
that any transformation approach is both correct and specific.
Correctness requires that the result of transforming one model
to another be at most a set of several models containing the
desired system model [20]. Specificity requires that the set
of models produced from a transformation be as small as
possible, and the user be provided with a means of selecting
the most appropriate model from the generated set.

In this paper, we present a model transformation approach
based on concepts from programming language theory. There
exist many syntactically different but semantically equivalent
ways to write any program. For instance, we could write a
program using while loops instead of for loops, or we could
write the program in an entirely different language. Program-
ming language theory studies how to transform one syntactic
representation of a program into a syntactically different but
semantically equivalent program. A common example of this
type of transformation is the process of compiling source code
into machine language. We illustrate the application of this
approach to system modeling and model transformation.

978-1-5090-5117-5/16/$31.00 c© 2016 IEEE

2

TABLE I
RELATED MODEL COMPOSITION AND TRANSFORMATION TOOLS

Project Target Field Applicable To Transformation Technique Examples
Ptolemy Cyber-physical systems Anything with a computation model Hierarchical [1], [2], [3], [4]
Möbius Complex network systems Performance and dependability Hierarchical [5], [6], [7]
AToM3 General modeling Anything that can be metamodeled Graph rewriting [8], [9]
CONCERTO Model-driven engineering Functional models Graph rewriting [10], [11], [12], [13], [14]
SIMTHESys General modeling Anything that can be metamodeled Inheritance-based [15], [16], [17], [18]
Rosetta General modeling Discrete event systems Coalgebraic functors [19], [20], [21], [22]

Every system model can be deterministically described;
therefore, we can view syntactic descriptions of models as
a language for semantically describing systems. Applying
concepts from programming language theory will allow us to
transform these models in a process analogous to compiling
a program or performing static program analysis. Many tech-
niques common to program transformation can be proven to
be correct. Consequently, our application of these techniques
will yield models transformations that are provably correct.

In the remainder of this paper, we briefly introduce model
composition and transformation frameworks in Section II.
The mathematical theory inspiring our work is presented in
Section III. Our proposed approach to model transformation
is described in Section IV and illustrated through an example
in Section V. Finally, we discuss our conclusions from and
future extensions to the work in Section VI.

II. RELATED WORK

Most model transformation techniques are developed as part
of a metamodeling tool. In this section we present several
metamodeling projects and their approach to model compo-
sition and transformation. Table I provides a comparison and
summary of these approaches.

The Ptolemy modeling software [1] performs hierarchical
modeling and model composition [2], [3]. As such, Ptolemy
makes it easy to build and link small models. Hierarchical
models can consist of heterogeneous submodels, allowing dif-
ferent parts of the system to be expressed using different types
of models. Ptolemy allows for heterogeneous computation:
it provides choices for both the modeling language and the
solution or simulation technique used to evaluate the model
[4]. However, Ptolemy does not offer methods for transforming
one system-level model to another.

Möbius [5] is another modeling tool that supports hier-
archical modeling. It supports several modeling formalisms,
including block diagrams and Petri nets, and can be interfaced
to external modeling tools for additional formalisms [6], [7].
While this feature offers considerable flexibility in modeling,
Möbius is constructed around a modeling workflow that builds
and evaluates hierarchical models and has little support for
model transformation.

AToM3 [8] is capable of both model transformation and
model composition. It uses metamodels to describe specific
modeling languages, then defines transformations between
metamodels to transform models [9]. Models are graph-based
and transformations take the form of graph rewriting rules.
However, there is no hierarchy of models, so introducing a

new model requires writing transformation rules from the new
model to each model that AToM3 implements.

CHESS [10] provides a modeling language for describing
systems and includes several model transformation methods
specific to creating dependability models. CHESS is based
on the Unified Modeling Language (UML); transformations
are based on graph rewriting rules. CONCERTO [11] extends
CHESS by introducing modeling techniques for nonfunctional
system attributes such as dependability [12]. However, CON-
CERTO is focused on multicore processing systems [13], [14]
and lacks the features necessary for modeling of CPSs.

OsMoSys [15] and SIMTHESys [17] are multimodeling
systems motivated by model-driven engineering. Their ap-
proach to model transformation is based on techniques from
software engineering, particularly object-oriented program-
ming and its class inheritance paradigm. OsMoSys features
compositional models and interfaces with external tools to
solve them [16]. SIMTHESys adds the ability to generate
formalism modeling and solution tools based on a user-
specified description of a formalism. The solution tools are
used to interpret and solve a model specified in the formalism.
OsMoSys and SIMTHESys are capable of modeling both
functional and non-functional aspects of a system [18].
They perform model transformation by viewing models as
classes - in the object-oriented programming sense - and using
inheritance principles to convert between models.

Rosetta [19] is focused on functional multiformalism mod-
eling [20]. It takes an algebraic approach to relating models:
each formalism is described as a coalgebra - a mathemati-
cal system useful for describing arbitrary transitions among
arbitrary states [21], [22]. The coalgebras corresponding to
each formalism are placed in a lattice, which provides a
straightforward structure for determining how to transform one
model into another (see Section III). Model transformations
can be used to relate different models of the same system; for
example, it is possible to combine a functional system model
with a model of that system’s power consumption. However,
Rosetta lacks many features required for CPS modeling,
especially support for hybrid discrete-continuous formalisms.
Furthermore, while the authors propose a method of model
transformation that can be proven correct, they do not address
specificity; thus, it may be difficult to get meaningful results
from certain transformations.

The approach we propose in this paper focuses on model-
to-model transformation and is not limited to composition
of submodels into a system model. Our approach is general
- it allows a variety of transformations among a variety of
models. Its application is not constrained to models that can be

3

represented as a graph or transformations that can be described
through an inheritance paradigm. Our focus is on computing
for sustainability, and as such, our approach operates on both
performance and dependability models in order to fully capture
the sustainable behavior of a system. A detailed mathematical
foundation enables us to prove the correctness of our approach.
Finally, we ensure specificity of our transformation results by
allowing users to customize them.

III. MATHEMATICAL FOUNDATIONS

In this section, we present the mathematical theory that
underpins our model transformation approach. We begin with
a discussion on ordered sets and lattices, which form the
basis for our definition of ‘correctness.’ Next, we elabo-
rate upon specific mappings between lattices, leading up to
Galois connections, which we use as model transformation
operations. Finally, we reformulate abstract interpretation, a
program transformation and analysis technique, in terms of
system model transformation.

A. Lattices
A lattice is a structure defined on and imparting a specific

order upon those objects. Lattices can guarantee the existence
of certain properties for objects and functions. The order
properties of lattices are commonly used to reduce the search
space of complex algorithms. The discussion here is intended
to provide a brief overview sufficient for description of our
model transformation approach; readers are referred to [24]
for greater detail.

Integral to the concept of a lattice is the concept of ordering
on a set:

Definition III.1. A poset, short for partially ordered set, (L,v
) is a set L and an order relation v (read‘lessthanorequal′) :
L× L→ {true, false} that is

1) Reflexive: l v l,∀l ∈ L
2) Transitive: If l1 v l2 and l2 v l3, then l1 v

l3,∀l1, l2, l3 ∈ L
3) Anti-symmetric: If l1 v l2 and l2 v l1, then l1 =

l2,∀l1, l2 ∈ L

Partial ordering does not require that ∀l1, l2 ∈ L, l1 v
l2 or l2 v l1. Such a requirement would yield a total rather
than partial ordering.

For example, the order relation v can be defined on a
Cartesian coordinate system (R2) as:

(x1, y1) v (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2
With this definition, (0, 0) v (1, 2) and (0, 0) v (2, 1), but

(1, 2) and (2, 1) are not comparable using v, 1 ≤ 2 but 2 � 1.

Definition III.2. A set Y ⊆ L has l ∈ L as an upper bound
if y v l,∀y ∈ Y . l is a least upper bound if for any upper
bound l′, l v l′. The least upper bound is denoted as

⊔
Y ,

i.e., the meet of Y .⊔
{l1, l2} can also be written as l1 t l2.

Definition III.3. l is a lower bound of Y if l v y,∀y ∈ Y .
The greatest lower bound is defined analogously to the least
upper bound. It is denoted as ⊔Y , i.e., the join of Y .

Continuing our example in R2, (0, 0) can be iden-
tified as a lower bound of {(1, 2), (2, 1)}. In addition,⊔
{(1, 2), (2, 1)} = (2, 2) and

⊔
{(0, 0), (0, 1), (1, 0)} =

(1, 1).
Functions relating two posets P1 and P2 can have the

following properties:

Definition III.4. A function f : P1 → P2 between posets
(P1,v1) and (P2,v2) is monotone (or order-preserving) if

p1 v1 p2 ⇒ f(p1) v2 f(p2),∀p1, p2 ∈ P1

As an example, let f : R2 → R2 be defined as f(x, y) =
(x+ 1, y). f is monotone, as:
(x1, y1) v (x2, y2) ⇐⇒ x1 ≤ x2 ⇐⇒ x1 + 1 ≤ x2 +
1 ⇐⇒ f(x1, y1) v f(x2, y2).

On the other hand, g(x, y) = (x, y2) is not monotone, as:
(0,−3) v (0,−2) but g(0,−3) = (0, 9) 6v g(0,−2) = (0, 4).

Lattices are posets with specific properties. The definitions
below articulate these properties.

Definition III.5. A complete lattice, L, is a partially ordered
set where the least upper bound and greatest lower bound,⊔
Y and ⊔Y , respectively, can be defined for all Y ⊆ L.

A consequence of III.5 is that every complete lattice has a
least element, ⊥ = ⊔L, and a greatest element, > =

⊔
L.

As an example, (R2,v) forms a complete lattice with ⊥ =
(−∞,−∞) and > = (∞,∞).

A complete lattice of note is the set of all subsets of a set S,
denoted as the powerset, P(S). (P(S),⊆) forms a complete
lattice, with

⊔
=

⋃
and ⊔= ⋂

. > = S and ⊥ = ∅, as every
element of P(S) is a subset of S and ∅ is a subset of every
set.

For example, if S = {1, 2, 3},

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The resulting lattice can be drawn as in Fig. 1.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Fig. 1. The lattice for (P(S),⊆).

It is worth noting that any set M ⊆ P(S) also forms a poset
(M,⊆). Posets that are ordered by inclusion (⊆) are denoted
as inclusion posets.

Theorem III.1. Every poset is order-isomorphic to an inclu-
sion poset [25].

4

B. Galois Connections

A Galois connection between two posets is a somewhat
weaker relationship than an order-preserving isomorphism
[25]. They are commonly used to abstract information from
one poset to another poset that has a better-understood struc-
ture. In our approach to model transformation, we abstract
information from a model of one aspect of a system, then
concretize the abstracted information into models of other
aspects of that system.

Definition III.6. A Galois connection (P, α, γ,Q) between
two posets (P,vP) and (Q,vQ), is a pair of monotone
functions α : P → Q and γ : Q→ P such that

p vP (γ ◦ α)(p),∀p ∈ P

(α ◦ γ)(q) vQ q,∀q ∈ Q

α is denoted as the abstraction operator and γ as the
concretization operator.

An alternative representation of a Galois connection can
be constructed using λx.x to denote a function that takes a
parameter x and returns x.

λp.p vP γ ◦ α

α ◦ γ vQ λq.q

Theorem III.2. α uniquely determines γ by

γ(q) =
⊔
{p : α(p) vQ q}

and likewise, γ uniquely determines α by

α(p) = ⊔{q : p vP γ(q)}

Proof.

γ(q) =
⊔
{p : p vP γ(q)} definition of γ

=
⊔
{p : α(p) vQ (α ◦ γ)(q)} α is monotone

=
⊔
{p : α(p) vQ q} (α ◦ γ)(q) vQ q

If both γ1 and γ2 form Galois connections with α, then both
γ1 and γ2 are defined to be

⊔
{p : α(p) vQ q} and thus γ1 =

γ2. We can similarly prove that α is uniquely determined.

This theorem does not state that there exists a unique Galois
connection between two lattices; there may be two connec-
tions, (P, α1, γ1, Q) and (P, α2, γ2, Q), that vary in the values
of both the abstraction and concretizer operator. However, it
is not possible to have two distinct connections (P, α, γ1, Q)
and (P, α, γ2, Q) with a common value for the abstraction
operator, but differ in the value of the concretization operator.

Finally, we can repeatedly abstract and then concretize
without incurring a loss of detail:

Theorem III.3. α ◦ γ ◦ α = α and γ ◦ α ◦ γ = α.

Proof. Using the alternate notation for Definition III.6:

λp.p vP γ ◦ α Defn. III.6
⇒ α vQ α ◦ γ ◦ α

α ◦ γ vQ λq.q Defn. III.6
⇒ α ◦ γ ◦ α vQ α

⇒ α ◦ γ ◦ α = α Anti-symmetry (Defn. III.1)

We can similarly prove that γ ◦ α ◦ γ = γ.

Galois connections are commonly used in program analysis,
because they can encode the concept of correctness. In the
context of transformation, correctness implies that the result
of transforming an object from one lattice to another and
back to the original lattice will be at worst more general than
the original object. This attribute is valuable in identifying
approximations to complex computations. Let (P, α, γ,Q) be
a Galois connection and fP : P → P a computationally
complex operation. Assume there exists an analogous oper-
ation, fQ : Q → Q, that is easier to compute. Assume that
fP (p1) = p2. The correctness property of Galois connections
ensures that p2 vP (γ ◦fQ ◦α)(p1). fP can hence be approxi-
mated by abstracting the operation to Q, then concretizing the
result of fQ.

C. Abstract Interpretation

Abstract interpretation was originally developed to unify
disparate program analysis techniques [26] . In this section,
we discuss the application of abstract interpretation to system
and model transformation.

In general, a complete system S is impossible to fully de-
scribe. Models are therefore created to describe and represent
different aspects of complete systems. If a model, m ∈ M ,
describes a system, S, this relationship is denoted as S ` m
(and read ‘as S entails m’). If it is possible to transform model
m1 into model m2, we write S ` m1 m2 . may or may
not be a function in the mathematical sense. Furthermore, it
is difficult to reason about in a general fashion, as it will
vary from model to model and system to system.

To facilitate analysis, we relate models to the system prop-
erties described by those models. We select properties that can
be deterministically transformed under the given system. If a
property, p ∈ P , holds for a system, we write S ` p. If a set
of properties, p1 ∈ P , can be transformed into a different
set of properties, p2 ∈ P , we write S ` p1 B p2. Since
B is deterministic, i.e., a given p1 can only be transformed
into one specific p2, we can define a transformation function
fS(p1) = p2.

The final element of our abstraction is a correctness relation,
R : M × P → {true, false}, where M is the set of models
and P is the set of sets of properties. If a model m is described
by property p, then mRp. In order for B to be well-defined,
R has to be preserved under transformation: if S ` m1 m2,
S ` p1 B p2, and m1Rp1, then m2Rp2 as well.

Given B and R, we can reason about model transformation
as follows. Assume a system S and a model of that system,
S ` m1, and we wish to compute m2 such that S ` m1 m2.
Given some set of properties p1 such that m1Rp1, we can

5

deterministically compute S ` p1Bp2. Then, we find a model
m2 such that m2Rp2. This approach then guarantees that
S ` m1 m2, allowing us to reason about , albeit in an
indirect fashion.

This relationship between model transformation, property
transformation, and correctness is illustrated in Fig. 2.

S ` m1 m2

‖ ‖
R ⇒ R

‖ ‖
S ` p1 B p2

Fig. 2. Relationship between model transformation and a correctness relation.

We now demonstrate now to leverage the correctness offered
by a Galois connection. Assume that (P,v) is a complete lat-
tice. If necessary, we can ‘lift’ an underlying set of properties,
D, into a lattice, P , by taking P = P(D).) The correctness
relation R can be constrained based on two properties of P :

(i) If mRp1 and p1 v p2, then mRp2.
(ii) If mRp, ∀p ∈ P ′ ⊆ P , then mR ⊔P ′.

Property (i) implies that the more specific a set of properties,
the more precisely (and thus effectively) it describes a model.
Property (ii) implies that given several sets of properties
describing a model, there exists a unique set of properties that
provides the best description.

We now define a representation function, β : M → P ,
that maps a models to the properties that best describe them.
If β(m1) v p1, S ` m1 m2, and S ` p1 B p2, then
β(m2) v p2. β can be defined in terms of R, or vice-versa.
This relationship is described by the diagram in Fig. 3.

S ` m1 m2

⇒

S ` p1 B p2

β

v

β

v

Fig. 3. Relationship between model transformation and a representation
function.

The definition of β may be very difficult for certain property
formulations. The combination of (i) and (ii) allows us to
approximate β by finding properties in the property set lattice
that describe the desired destination model, and then applying
fixpoint theory to narrow that property down to the best
(smallest) property we can find.

To show the correctness of β, we can define a Galois
connection between P and P(M):

γ(p) = {m ∈M : β(m) v p} (1)

α(M ′) =
⊔
{β(m) : m ∈M ′} (2)

Concretizing a set of properties yields the models described
by those properties. Abstracting a set of models yields the
smallest set of properties describing all models in the set.

If a set of properties, D, has been ‘lifted’ into a powerset
lattice, the construction is slightly different. Instead of directly
defining β, we define a function, η : M → D, that maps
models to properties. Let β : M → P(D) be defined by
β(m) = {η(m)}, yielding a function that relates models and
elements of P .

γ(P ′) = {m ∈M : β(m) ⊆ P ′} = {m ∈M : η(m) ∈ P ′}
(3)

α(M ′) =
⊔
{β(m) : m ∈M ′} = {η(m) : m ∈M ′} (4)

All of these functions are related, as depicted in Fig. 4. Note
that lift : X → P(X) is defined by lift(x) = {x}.

P(M) P(D) = P

M D

α

γ

lift lift
β

η

Fig. 4. Galois connection between values and powerset of properties.

IV. PROPOSED APPROACH TO MODEL TRANSFORMATION

Our goal is to be able to perform the following operations:
1) Convert system properties to a model describing those

properties.
2) Convert a model to a set of properties that it describes.
3) Incorporate additional information into a set of properties

to allow the derivation of additional models from the set.
We must be able to guarantee the correctness of these

operations, i.e., that the result they yield is at most a more
general result.

Central to this research is the idea of abstracting system
properties from models. This allows the selection of ideal
representations for both types of objects. We construct one
lattice of system properties and a lattice for each type of
model. From this, we define Galois connections between the
system properties lattice and the lattice of each model. Finally,
we demonstrate how to specialize generated models that are
too general, by allowing the user to introduce additional
information. This last situation arises in cases where the known
system properties are not sufficient to define all parameters of
the generated model.

We begin by considering the set properties of sets of
system properties and the set models of objects that are
models of a system. For now, we will not identify the elements
of these sets; Section V provides one approach to defining
these elements.

To view model transformation through the lens of abstract
interpretation, sets of properties and models should be con-
sidered. A model may describe more than one system, as few
models can determine all of a system’s parameters, and a set of
properties may not describe a sufficient number of parameters

6

to determine a unique model. To account for these possibili-
ties, we ‘lift’ our modeling approach from properties and
models to the powersets P(properties) and P(models).
We can then describe the interactions between these sets via
the diagram in Fig. 5.

P(models) P(properties)

models properties

α

γ

σ lift lift
β

η

Fig. 5. System and model interaction diagram.

β converts a model to the properties it describes. σ selects
one model from a set of models, effectively providing infor-
mation about assumptions that were not available in the set of
properties from which the set of models was created.

If we have p ∈ P(properties) and m = σ(γ(p)), the
additional information provided by σ can be incorporated into
p′ ∈ P(properties) by letting p′ = p ∪ β(m).

At this point, we have defined all of the operations we
require for model transformation, but have not discussed cor-
rectness. Since every powerset is a complete lattice, we can de-
fine a Galois connection (P(properties), α, γ,P(models))
between P(properties) and P(models). If α and γ form
a Galois connection, it is guaranteed that they will correctly
transform elements of the sets on which they operate. Since
the operation of lifting is trivially correct, this connection
effectively provides guarantees over the entire diagram -
provided that we define operations in terms of α and γ.

Transforming from properties to a model (γ), yields a model
that describes those properties, but may also describe other sets
of properties equally well. For instance, since α(γ(p)) v p
for any p ∈ P(properties), the model given by γ(p)
may describe any set of properties that is a subset of p.
Transforming from a model to a set of properties (α), yields
the set of properties described by that model. In either case,
it is impossible for the result to be incorrect; effectively, we
may trade specificity for correctness. σ then becomes a means
to restore specificity.

This approach shifts the objective of model transformation
from finding transformations directly between types of models
to a process comprised of abstraction and concretization.
Suppose we have two types of models, model1 and model2,
and that we wish to transform m1 ∈ model1 to an m2 ∈
model2. We will have the following two Galois connections:

(P(model1), α1, γ1,P(properties))

(P(model2), α2, γ2,P(properties)),

and the associated representation functions:

β1 : model1 → P(properties)

β2 : model2 → P(properties)

.
We can abstract information from m1 to properties by

letting p1 = β1(m1). The correctness guarantee of the Galois
connection implies that m1 ∈ γ1(p1). Since we have a second
Galois connection to P(model2), we can let M2 = γ2(p1).
At this point, we can define σ2 : P(model2)→ model2 to
introduce any additional information about the system that is
necessary to uniquely identify m2 in M2. Therefore, we are
able to correctly transform models and to explicitly identify
system modeling assumptions.

We can capture the additional modeling assumptions pro-
vided by σ2(M2) = m2 in P(properties) by abstracting
properties from m2: p2 = β2(m2). This information can
be unified with the information from m1 by taking p =
p1 t p2. Thus, the effort expended on identifying modeling
assumptions can be leveraged when performing further model
transformations.

V. EXAMPLE

We illustrate our proposed approach to model transforma-
tion with an example inspired by the case study in [27], where
a Markovian reliability model is developed for a smart grid.
For clarity and brevity, we consider a power grid with one
generator, one load, and two power lines connected in parallel,
as shown in Fig. 6. This figure represents the topological
model of the system.

Generator

c1

Load
c2

c3

c4

Fig. 6. Sample power grid topology.

The MIS model is a reliability model; it describes system
lifetime–the probability the system has not failed before a
given time - and determines system-level reliability based on
the reliability of individual components. We assume for each
line a reliability of pL (and thus unreliability of qL = 1−pL);
the generator and load are assumed to not fail and have
been omitted from the model. We consider the system to
be functional as long as it is capable of transmitting power,
i.e., the system is operational if at least one line is up.

The MIS model for the reliability of this system, under our
assumptions, is given by four basic equations. The possible
states are enumerated in Table II; each state represents one
combination of failed and functional components and can
be represented by the set of functional components. As an
example, S1 ' {c3, c4}, S2 ' {c3}, etc. The system is
typically assumed to begin operation from an initial state
where all components are functional - for this example, S1.
The resulting probability distribution of initial system states is
given in Equation 5; this is generally of the form [1, 0, . . . , 0]
in MIS reliability modeling. Equation 6 identifies the states
that are considered functional. The matrices in Equations 7
and 8 describe how the failure of c3 and c4, respectively,
causes the system state to change, i.e., these matrices represent

7

the state transition probabilities. Equation 9 composes all of
these elements into an expression for system-level reliability
as a function of transmission line reliability. For very simple
systems, the expression can be written by inspection.

TABLE II
STATE DEFINITION MATRIX FOR m.

Components

States c3 c4

S1 1 1

S2 1 0

S3 0 1

S4 0 0

Π0 = [1, 0, 0, 0] (5)
u = [1, 1, 1, 0] (6)

Pc3 =

pL 0 qL 0
0 pL 0 qL
0 0 1 0
0 0 0 1

 (7)

Pc4 =

pL qL 0 0
0 1 0 0
0 0 pL qL
0 0 0 1

 (8)

R = ΠT
0 ∗ Pc3 ∗ Pc4 ∗ u = p2L + 2pLqL (9)

Thus far we have two models: a topological model and
a reliability model. Let the topological model be denoted
as t ∈ topology and assume that it can be represented
as a graph with labeled edges and nodes. The function
βtopology : topology → P(properties) abstracts a rep-
resentation of system properties described by this topology.
Let βtopology(t) = T . Members of properties are labeled
tuples; T contains elements of the following types:

components ⊆ component (10)
attributes ⊆ component× {generator, load, line}

(11)
links ⊆ component× component× component

(12)
neighbors ⊆ component× P(component) (13)

This formalism enables identification of the components of
a system, the attributes of each component, the connections
(edges) among components, and the edges incident on each
node. The set component is an ‘index set’; the elements
themselves are uninteresting, but they provide a means to attain
useful information from other functions, such as attributes.

For the example of Figure 6:

components(T) = {c1, c2, c3, c4}
attributes(T) = {(c1, generator), (c2, load),

(c3, line), (c4, line)}
links(T) = {(c1, c3, c2), (c1, c4, c2)}

neighbors(T) = {(c1, {c3, c4}), (c2, {c3, c4})}

In representing the MIS model, m ∈ MIS, we define
βMIS : MIS → P(properties) and let βMIS(m) = M .
The elements of M will differ from those of T :

components ⊆ component (14)
attributes ⊆ component× [0, 1] (15)

functional states ⊆ P(component) (16)
initial probability ⊆ P(component)× [0, 1] (17)

This yields another index set of components. Note that
this set will not include information about all components
of components(T), as m only considers line reliabilities. In
addition, we have another function that yields a set of all of
sets of components that compose a functional system state and
a function describing the probability of a given state being the
initial state.

components(M) = {c3, c4}
attributes(M) = {(c3, pL), (c4, pL)}

functional states = {{c3, c4}, {c3}, {c4}}
initial probability = {({c3, c4}, 1)}

Thus far, we have demonstrated how to determine the
system properties that are described by certain models. We
now demonstrate how to transform one model to another with
the concretization operator, γMIS .

Let γMIS(T) = mT . We identify unbound variables - those
that have not been assigned a value - with the Fraktur typeface,
e.g., p. mT represents the set of MIS models, where all
possible values have been assigned to each unbound variables.
Equations 18 through 22 complete representation of the MIS
model. The matrices corresponding to Pc2 , Pc3 , and Pc4 have
been omitted for brevity.

TABLE III
STATE DEFINITION MATRIX FOR mT

Components

States c1 c2 c3 c4

S1 1 1 1 1

S2 1 1 1 0

S3 1 1 0 1

S4 1 1 0 0

S5 1 0 1 1

S6 1 0 1 0

S7 1 0 0 1

S8 1 0 0 0

S9 0 1 1 1

S10 0 1 1 0

S11 0 1 0 1

S12 0 1 0 0

S13 0 0 1 1

S14 0 0 1 0

S15 0 0 0 1

S16 0 0 0 0

8

Π0 = [s1, · · · , s15] (18)
u = [u1, · · · , u15] (19)

Pc1 = (20)

pc1 0 · · · qc1 0 · · ·
...

. . .
...

. . .
0 · · · pc1 0 · · · qc1
0 · · · 0 1 0 · · ·
...

...
...

. . .
0 · · · 0 0 · · · 1

(21)

R = ΠT
0 ∗ Pc1 ∗ Pc2 ∗ Pc3 ∗ Pc4 ∗ u (22)

The selection operator, σMIS , binds values to the unbound
variables in a model-aware fashion. If we use σMIS to bind
pc1 = pc2 = 1, this forces u5 = · · · = u16 = 0 and s5 =
· · · = s16 = 0, since the failed states for these components
are unreachable. Binding pc3 = pc4 = pL, s1 = 1, u1 =
u2 = u3 = 1, and u4 = 0 suffice to generate an MIS model
equivalent to m.

VI. CONCLUSION

In this paper, we propose a systematic approach to model
transformation, based on concepts from abstract interpretation.
We demonstrate a) how this approach can be used to abstract
information about a system from a model of the system
and b) how the information abstracted from one model can
be concretized into a different model. Our approach is both
correct–it always produces a set containing the desired model–
and specific–the set of models produced is as small as possible.

This technique can be applied to a variety of application
domains and can be used to generate cross-domain models,
such as a model of the power consumption of a water distri-
bution network. Dependability models can be generated from
performance models, or vice versa, considerably facilitating
the modeling and analysis of sustainable infrastructure.

While this approach is promising, our future work will aim
to include more rigorous descriptions of the various operators
involved. Extending and applying the method to diverse mod-
eling formalisms is another near-term objective. Creation of a
software tool for management of system modeling workflows
is another extension planned to this work.

REFERENCES

[1] C. Ptolemaeus, ed., System design, modeling, and simulation: using
Ptolemy II. Berkeley, Calif: UC Berkeley EECS Dept, 1. ed., version
1.02 ed., 2014.

[2] Y. Xiong, E. Lee, X. Liu, Y. Zhao, and L. Zhong, “The design and ap-
plication of structured types in Ptolemy II,” in 2005 IEEE International
Conference on Granular Computing, vol. 2, pp. 683–688 Vol. 2, July
2005.

[3] B. Lickly, C. Shelton, E. Latronico, and E. A. Lee, “A practical ontology
framework for static model analysis,” in Proceedings of the Ninth ACM
International Conference on Embedded Software, EMSOFT ’11, (New
York, NY, USA), pp. 23–32, ACM, 2011.

[4] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and C. Goble, “Het-
erogeneous composition of models of computation,” Future Generation
Computer Systems, vol. 25, pp. 552–560, May 2009.

[5] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. Doyle,
W. Sanders, and P. Webster, “The Möbius modeling tool,” in 9th
International Workshop on Petri Nets and Performance Models, pp. 241–
250, 2001.

[6] S. Gaonkar, K. Keefe, R. Lamprecht, E. Rozier, P. Kemper, and
W. H. Sanders, “Performance and dependability modeling with Möbius,”
SIGMETRICS Performance Evaluation Review, vol. 36, pp. 16–21, Mar.
2009.

[7] C. Buchanan and K. Keefe, “Simulation debugging and visualization
in the Möbius Modeling Framework,” in Quantitative Evaluation of
Systems (G. Norman and W. Sanders, eds.), no. 8657 in Lecture Notes
in Computer Science, pp. 226–240, Springer International Publishing,
Sept. 2014.

[8] J. De Lara and H. Vangheluwe, “AToM3: A tool for multi-formalism
and meta-modelling,” in FASE, vol. 2, pp. 174–188, Springer, 2002.

[9] J. De Lara, H. Vangheluwe, and M. Moreno, “Using meta-modelling and
graph grammars to create modelling environments,” Electronic Notes in
Theoretical Computer Science, vol. 72, no. 3, 2002.

[10] “CHESS Project Website - CHESS.” http://www.chess-project.org/.
[11] “CONCERTO Project.” http://www.concerto-project.org/.
[12] L. Montecchi, P. Lollini, and A. Bondavalli, “A reusable modular

toolchain for automated dependability evaluation,” in Proceedings of the
7th International Conference on Performance Evaluation Methodologies
and Tools, pp. 298–303, ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2013.

[13] V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Pataricza, and
A. Bondavalli, “Executable models to Support Automated Software
FMEA,” pp. 189–196, IEEE, Jan. 2015.

[14] A. de Matos Pedro, D. Pereira, L. M. Pinho, and J. S. Pinto, “Towards a
runtime verification framework for the ada programming language,” in
Reliable Software Technologies–Ada-Europe 2014, pp. 58–73, Springer,
2014.

[15] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis, “The
OsMoSys approach to multi-formalism modeling of systems,” Software
and Systems Modeling, vol. 3, pp. 68–81, Nov. 2003.

[16] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, and V. Vit-
torini, “Towards an object based multi-formalism multi-solution mod-
eling approach,” Proceedings of the Second Workshop on Modelling of
Objects, Components and Agents Aarhus (MOCA02), Denmark, vol. 26,
no. 27, pp. 47–65, 2002.

[17] E. Barbierato, M. Gribaudo, and M. Iacono, “Simthesyser: a tool
generator for the performance evaluation of multiformalism models,”
tech. rep., Universitı́ degli Studi di Napoli, Belvedere Reale di San
Leucio 81100 Caserta, Italy, 2012.

[18] M. Iacono, M. Gribaudo, and E. Barbierato, “Exploiting multiformalism
models for testing and performance evaluation in SIMTHESys,” ACM,
2011.

[19] C. Kong and P. Alexander, “The Rosetta meta-model framework,” in
10th IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems, pp. 133–140, Apr. 2003.

[20] J. Streb and P. Alexander, “Using a lattice of coalgebras for heteroge-
neous model composition,” in Proceedings of the MoDELS Workshop
on Multi-Paradigm Modeling, pp. 27–38, 2006.

[21] N. Frisby, M. Peck, M. Snyder, and P. Alexander, “Model Composition
in Rosetta,” in 18th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS), pp. 140–148, Apr.
2011.

[22] P. Alexander, “Rosetta: Standardization at the System Level,” Computer,
vol. 42, pp. 108–110, Jan. 2009.

[23] H. Vangheluwe, J. De Lara, and P. J. Mosterman, “An introduction
to multi-paradigm modelling and simulation,” in Proceedings of the
AIS’2002 conference (AI, Simulation and Planning in High Autonomy
Systems), Lisboa, Portugal, pp. 9–20, 2002.

[24] B. A. Davey and H. A. Priestley, Introduction to lattices and order.
Cambridge university press, 2002.

[25] P. Smith, “The Galois connection between syntax and semantics,”
University of Cambridge, 2010.

[26] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

[27] M. N. Albasrawi, N. Jarus, K. A. Joshi, and S. Sedigh Sarvestani,
“Analysis of reliability and resilience for smart grids,” in IEEE 38th
Annual Computer Software and Applications Conference (COMPSAC),
pp. 529–534, IEEE, 2014.

